WATER USE AND TAILINGS MANAGEMENT IN SURFACE MINED OIL SANDS

Randy J. Mikula
Kalium Research
Reserves and Production Summary 2005 (billions of barrels)

<table>
<thead>
<tr>
<th></th>
<th>EUB NR2006-08 #</th>
<th>EUB ST98-2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitumen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Resource</td>
<td>1,694</td>
<td></td>
</tr>
<tr>
<td>Reserve</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>Remaining Reserve</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>Annual production</td>
<td>0.388</td>
<td></td>
</tr>
<tr>
<td>Years of production</td>
<td>448</td>
<td></td>
</tr>
<tr>
<td>Mineable</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>in situ</td>
<td></td>
<td>144</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.252</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.189</td>
</tr>
</tbody>
</table>

Alberta

oilsands@shaw.ca
Reserves and Production Summary 2009 (ERCB ST98-2010) in billions of barrels

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Mineable</th>
<th>In situ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitumen Resource</td>
<td>1,805</td>
<td>131</td>
<td>1,674</td>
</tr>
<tr>
<td>Reserve</td>
<td>176</td>
<td>38</td>
<td>138</td>
</tr>
<tr>
<td>Remaining Reserve</td>
<td>170</td>
<td>34</td>
<td>135</td>
</tr>
<tr>
<td>Annual Production</td>
<td>.544</td>
<td>.302</td>
<td>.246</td>
</tr>
<tr>
<td>Years of Production</td>
<td>312</td>
<td>113</td>
<td>553</td>
</tr>
</tbody>
</table>

Approximately a 20% production increase in 2 years; 27 fewer years to reclaim
The area occupied by the circle is approximately 400,000km2, and the area of the oil sands resource (in white) is approximately 141,000km2. Currently land disturbance due to oil sands development is about 600km2, with tailings containment about 180km2.
A lot of water is required to produce a barrel of bitumen!
Mineral

Bitumen

Water

Sand

Fines

Oil Sand

Water

+ Fluid fine tails

Sand Tails

Recycled Water

Bitumen product

Leftover water and mineral

oilsands@shaw.ca
The tailings containment structures are some of the largest man made features on the planet.

Dry stackable tailings technology is one way to reduce the volume of the accumulated fluid fine tailings. Dry stackable tailings implementation will allow for reclamation of the boreal forest, and reduce the water requirement from the Athabasca river.
Aerial photo from approximately 1987 when the “best available technology” was water capping of the accumulated fluid fine tailings or sludge.

CT/NST technology promised to increase water re-use from 75% to over 80%, but now even this improvement on the “best available technology” proposes to have an end pit lake containing leftover fluid fine tailings or MFT.
Suncor Pond 1 Reclamation
Environmental issues

Water availability (river ecosystem)
Lease storage volume limitations (land disturbance)

Economic issues

Water availability (collection and conservation of water)
Lease storage volume limitations (sterilization of resource)
Storage volume limitations will drive new tailings technologies as much as water availability. Without the implementation of some other dry stackable tailings technology, long term storage volumes could become unsustainable.
The ability to characterize nano-scale oil sands components is critical to our ability to manipulate their properties and mitigate the environmental impact of oil sands tailings development.
This much water is used for extraction

This much water must be added

This much water is lost

Water used for extraction: Approximately 12 barrels per barrel of bitumen

Water Recycled: Approximately 70%

Water lost to tailings: Approximately 4 barrels per barrel of bitumen

(this is for a typical ore)
THE CT PROCESS
With the correct recipe, CT or NST is pumpable, but rapidly releases recycle water, leaving a trafficable surface for reclamation of the boreal forest. Without the correct recipe, the mixture will segregate, leaving a fluid material unsuitable for reclamation.
The circled area represents the commercial version of the swimming pool experiment in the previous slide, and the photographs show the trafficable surface created. Water released from this pond was returned to the extraction process, reducing storage volumes and reducing withdrawal from the Athabasca river.
CNRL is proposing to commercialize the CT/NST process using carbon dioxide as the chemical additive rather than gypsum.
MFT DEWATERING
aka Thin Lift
aka TRO
aka AFD
Thin lift dewatering, Syncrude 2010
Thin lift dewatering
Rim Ditching on a lab scale
Rim Ditching on a big scale: 2009 Syncrude Test

oilsands@shaw.ca
Rim Ditch September 2010
Centrifuged fluid fine tailings

- Increased water recycle
- Reduced volume
- No fluid storage requirement
- Reclamation behind the mining operation
20 t/h pilot test of dry stackable fluid fine tailings

“Conclusions from the 20t/hour pilot study were that not only is it possible to create a stackable total tailings, but the project was economically viable at year 2000 oil prices. Lessons learned during this study can be directly applicable to the Athabasca oil sands.” 2006 CIPC, Calgary
Tailings stack being removed in preparation for another test run.
Aerial view of the 2008 Syncrude pilot demonstration of centrifuged fluid fine tailings

oilsands@shaw.ca
Centrifuged Fluid Fine Tailings Pilot at Syncrude: Dry Cake
Another dry stackable tailings technology
A new standard in fluid fine tailings dewatering: Syncrude Centrifuge Pilot cell #3
Centrifuge 2010

oilsands@shaw.ca
Bitumen in Tailings
The CT/NST Process

The Centrifuge Process

Historical Tailings Management

Relative Volume

- Bitumen
- Water
- Sand
- Fines

Oils and Sand Water Sand MFT Recycle

Water Sand MFT Dry Stackable Tailings: CT Process

Recycle Water Sand Dry Stackable Tailings: Centrifuge Process

Recycle Water
SUMMARY

Several tailings management options are commercialized or have been demonstrated at close to commercial scale. Syncrude is leading the industry in understanding and scaling up all of these options.

Water conservation by the use of “dry stackable tailings” management options will have significant implications for the recycle water chemistry and we may have the opportunity to improve water quality from an environmental perspective.

The implementation of the ERCB Tailings Directive will be extremely challenging.
Any Questions?